DNA Binding in High Salt: Analysing the Salt Dependence of Replication Protein A3 from the Halophile Haloferax volcanii
نویسندگان
چکیده
Halophilic archaea maintain intracellular salt concentrations close to saturation to survive in high-salt environments and their cellular processes have adapted to function under these conditions. Little is known regarding halophilic adaptation of the DNA processing machinery, particularly intriguing since protein-DNA interactions are classically salt sensitive. To investigate such adaptation, we characterised the DNA-binding capabilities of recombinant RPA3 from Haloferax volcanii (HvRPA3). Under physiological salt conditions (3 M KCl), HvRPA3 is monomeric, binding 18 nucleotide ssDNA with nanomolar affinity, demonstrating that RPAs containing the single OB-fold/zinc finger architecture bind with broadly comparable affinity to two OB-fold/zinc finger RPAs. Reducing the salt concentration to 1 M KCl induces dimerisation of the protein, which retains its ability to bind DNA. On circular ssDNA, two concentration-dependent binding modes are observed. Conventionally, increased salt concentration adversely affects DNA binding but HvRPA3 does not bind DNA in 0.2 M KCl, although multimerisation may occlude the binding site. The single N-terminal OB-fold is competent to bind DNA in the absence of the C-terminal zinc finger, albeit with reduced affinity. This study represents the first quantitative characterisation of DNA binding in a halophilic protein in extreme salt concentrations.
منابع مشابه
Reconstitution of the signal recognition particle of the halophilic archaeon Haloferax volcanii.
The signal recognition particle (SRP) is a ribonucleoprotein complex involved in the recognition and targeting of nascent extracytoplasmic proteins in all three domains of life. In Archaea, SRP contains 7S RNA like its eukaryal counterpart, yet only includes two of the six protein subunits found in the eukaryal complex. To further our understanding of the archaeal SRP, 7S RNA, SRP19 and SRP54 o...
متن کاملIn the Archaea Haloferax volcanii, membrane protein biogenesis and protein synthesis rates are affected by decreased ribosomal binding to the translocon.
In the haloarchaea Haloferax volcanii, ribosomes are found in the cytoplasm and membrane-bound at similar levels. Transformation of H. volcanii to express chimeras of the translocon components SecY and SecE fused to a cellulose-binding domain substantially decreased ribosomal membrane binding, relative to non-transformed cells, likely due to steric hindrance by the cellulose-binding domain. Tre...
متن کاملChromatin is an ancient innovation conserved between Archaea and Eukarya
The eukaryotic nucleosome is the fundamental unit of chromatin, comprising a protein octamer that wraps ∼147 bp of DNA and has essential roles in DNA compaction, replication and gene expression. Nucleosomes and chromatin have historically been considered to be unique to eukaryotes, yet studies of select archaea have identified homologs of histone proteins that assemble into tetrameric nucleosom...
متن کاملFrom genomes to function: haloarchaea as model organisms.
Haloarchaea are adapted to high-salt environments and accumulate equally high salt concentrations in the cytoplasm. The genomes of representatives of six haloarchaeal genera have been fully or partially sequenced, allowing the analysis of haloarchaeal properties in silico. Transcriptome and proteome analyses have been established for Halobacterium salinarum and Haloferax volcanii. Genetic syste...
متن کاملCloning, expression, and purification of functional Sec11a and Sec11b, type I signal peptidases of the archaeon Haloferax volcanii.
Across evolution, type I signal peptidases are responsible for the cleavage of secretory signal peptides from proteins following their translocation across membranes. In Archaea, type I signal peptidases combine domain-specific features with traits found in either their eukaryal or bacterial counterparts. Eukaryal and bacterial type I signal peptidases differ in terms of catalytic mechanism, ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2012 شماره
صفحات -
تاریخ انتشار 2012